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Abstract

Irregular convex triangular networks consist from the interior of a 6-sided convex polygon

drawn on the infinite triangular network. Formal description of these applicable networks is

provided. In the main result it is proved that the metric dimension of an irregular convex

triangular network is either 2 or 3 and the determination of which value is the right one is

specified. Metric dimensions of various graph classes and interconnection networks are also

collected.
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1 Introduction

Network science has risen as a multidisciplinary effort to estimate the structural features of complex
systems due to the requirement to define interconnections mathematically [5]. Due to the develop-
ment of big data, the concept of a network (a collective of components, alias “nodes," linked together
by the connections, alias “edges," among them) has emerged as a practical way to represent a wide
variety of empirical knowledge in physical, biological, and social phenomena [37]. Network science
acquired its basic principles via graph theory, mathematically preoccupied with pairwise relation-
ships between features [33], and was inspired by landmark works in sociology and economics [9,53].
Graph theory and network science, on the other hand, have gone their own ways since then, with
so little convergence in their academic buildings and research community. This subject is discussed
in [12, 47]. The challenge of coming up with a unique representation for each vertex in a connected
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graph arises in many contexts including robot navigation [27], coin weighing problems [49], con-
nected joins in graphs [44], hierarchical data structures [38], network discovery and verification [7]
and mastermind game strategy [18].

The tessellation of the plane into triangles is the foundation of hexagonal networks. Networks
with a regular square separation are termed mesh networks, and those with a regular hexagonal
partition are called honeycomb networks. There is a degree of inconsistency in the choice of the
name, which arises from the duality between graphs that correspond to hexagonal networks and
honeycomb networks. These networks are applied in many areas, say in mathematical chemistry,
in image processing, in wireless networks, in computer graphics, and in interconnection networks,
cf. [39]. As a generalization of the planar hexagonal networks, higher dimensional hexagonal net-
works have been defined in [14, 39], and the honeycomb design has been presented in [50]. For a
network with hexagonal nodes, an addressing method for the processors and accompanying routing
and broadcasting algorithms have been presented [13]. Cellular networks have employed hexagonal
networks for user tracking and connection rerouting [39].

In this paper we consider the metric dimension of irregular convex triangular networks and
proceed as follows. In the next section we recall the metric dimension and make a small survey
of known results related to it, where we concentrate on determining the metric dimension of graph
classes. In Section 3 we introduce the networks of interest in this paper and prepare the mathematical
formalities on them that we need for the following. Then, in Section 4 we determine their metric
dimension.

2 The metric dimension

Visual identification of a distinctive landmark by a robot moving in Euclidean space offers infor-
mation about the landmark’s direction and helps the robot to pinpoint its position. However, a
graph lacks any discernible direction or transparency. Moreover, it is generally accepted that a
robot moving along a graph can gauge how far apart landmarks are as it travels them. Clearly, if
the robot knows the distances to a big enough selection of landmarks, its position on the graph may
be computed uniquely. A metric basis is a set of landmarks that uniquely determines the robot’s
position, and the metric dimension of the graph [27] is the lowest number of landmarks. As a result,
a graph-theoretic understanding of this problem is to construct codes for the vertices of a graph in
such a way that each vertices has a unique code. The recent publications [1, 25, 29, 31, 32, 41, 52] all
reflect on this.

Let G = (V (G), E(G)) be a connected graph. The distance between vertices u and v is the
length of a shortest u, v-path and denoted by dG(u, v). If G will be clear from the context, we may
also write d(u, v). For an ordered set of vertices R = {r1, r2, . . . , rl} and a vertex u ∈ V (G), the
representation of u with respect to R is the vector (dG(u, r1), dG(u, r2), . . . , dG(u, rl)). If the vertices
of G have pairwise different representations with respect to R, then R is a resolving set for G. That
is, R is a resolving set if for each pair of different vertices x, y ∈ V (G) there exits a vertex r ∈ R
such that dG(x, r) 6= dG(y, r). The metric dimension dim(G) of G is the cardinality of a smallest
resolving set for G, such a set is called a metric basis.

These concepts were first suggested by Slater [47, 48], who was inspired by applications to the
placement of a small number of sonar detecting devices in a network such that the position of each
vertex in the network may be uniquely identified in terms of its distance from the set of devices.
Harary and Melter [23] independently introduced this concept. Two decades later, Khuller et al. [27]
also (independently) found these ideas and coined the term metric dimension. While attempting
to establish a capability for enormous data sets of chemical graphs, these notions were rediscovered
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once more in [12, 26].
Determination of the metric dimension is NP-complete for general graphs [27], and, moreover,

the problem remains NP-complete on bipartite graphs [34]. This makes it interesting to determine
the metric dimension for specific classes of graphs, and so far this has been very intensively investi-
gated. In Table 1 we have gathered the work on the metric dimension of various graph classes and
interconnection networks.

Table 1: Metric Dimension of various classes

Structure Reference

trees, multi-dimensional grids Khuller et al. [27]

line graphs, para-line graphs Klein et al. [28]

torus networks Manuel et al. [35]

some families of graphs Cáceres et al. [11]

Cayley digraphs Fehr et al. [15]

unicyclic graphs Poisson et al. [40]

Petersen graphs Shao et al. [45]

circulant graphs Rajan et al. [19]; Imran et al. [24]

Harary graphs Rajan et al. [19]

Illiac networks Rajan et al. [43]

Jahangir graph Tomescu et al. [51]

enhanced hypercubes Rajan et al. [42]

random graphs Bollobas et al. [8]

Benes networks Manuel et al. [34]

honeycomb networks Manuel et al. [36]

distance-regular graphs Guo et al. [21]

infinite graphs Cáceres et al. [10]

hypercubes Beardon [6]

wheel-related graphs Siddiqui et al. [46]

bilinear forms graphs Feng et al. [16]

Grassmann graphs Bailey et al. [4]

symplectic dual polar graphs Guo et al. [20]

permutation graphs Hallaway et al. [22]

Kneser and Johnson graphs Bailey et al. [3]

T iO2[m,n] Prabhu et al. [41]

chain graphs Fernau et al. [17]

convex polytopes Imran et al. [25]

incidence graphs Bailey [2]

To conclude this section we recall the following result needed later on.

Theorem 2.1. [27] If {s, t} is a metric basis of a graph G, then degG(s) ≤ 3, degG(v) ≤ 3, and there

is exactly one shortest u, v-path P . Moreover, if w is an internal vertex of P , then degG(w) ≤ 5.

3 Irregular convex triangular networks

In this section we introduce irregular convex triangular networks and provide their formal description.
Intuitively, they consist from the interior of a 6-sided convex polygon drawn on the infinite triangular
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Figure 1: (a) P4,5; (b) T5; (c) T3,6; (d) H3; (e) H3,4,3,6; (f) Convex parts of H3,4,3,6

network.
If r < s are integers, then we will denote the set {r, r +1, . . . , s} by [[r, s]]. For given parameters

n, m, p, and q, let {H0,H1, . . . ,H2n+m−p−q}, {A0, A1, . . . , An} and {O0, O1, . . . , Om+n} be three
respective sets of lines corresponding to horizontal, acute, and obtuse lines fulfilling the following
conditions:

1. ∠HiAj = π/3 for i ∈ [[0,m+ 2n− p− q]] and j ∈ [[0, n]];

2. ∠HiOk = 2π/3 for i ∈ [[0,m+ 2n− p− q]] and k ∈ [[0,m+ n]];

3. ∠AjOk = π/3 for j ∈ [[0, n]] and k ∈ [[0,m+ n]].

Assuming the above conditions, a convex triangular grid ∆2n+m−p−q,n,m+n is a graph derived by
treating all triple intersection points as vertices and the line joining all triple intersection points
as edges. (Many non-isomorphic convex triangular grids have the same parameters [30].) If the
boundary of the triangular grid ∆h,a,o is a trapezium, we say that the grid is a triangular trapezium.
In this case we have a = o in ∆h,a,o . The height and the length of the base are respectively denoted
by h − 1 and a − 1, the graph is denoted by Th−1,a−1. This triangular trapezium is reduced to a
triangular triangle Th−1 when h = a. By I2n−1, n ≥ 1, we denote a chain of (2n− 1)− triangles. It
is easy to observe that I2n−1

∼= T1,n. In ∆h,a,o, if the boundary of ∆h,a,o forms a parallelogram, then
∆h,a,o is a triangular parallelogram. For this case we have h− 1 = |o− a| and ∆h,a,o

∼= ∆h,o,a. For a
triangular parallelogram we always assume that a < o and denote ∆h,h+a−1,a by Ph−1,a−1. Also for
n ≥ 1, we have P1,n

∼= I2n. Several examples of these networks can be seen in Fig. 1.
Now, an irregular convex triangular hexagon Hp,q,m,n is formed by merging the base of Tq,n and

Tp,n with two bases of Pm,n, where p ∈ [[0, n]], q ∈ [[0, n]], and m ≥ 0. By symmetry we have
Hp,q,m,n

∼= Hq,p,m,n, hence we may assume in the rest that always p ≤ q holds. Also note that
Tn,q

∼= Tq,n
∼= Hq,0,0,n; Pm,n

∼= Pn,m
∼= H0,0,m,n; I2n−1

∼= H1,0,0,n and I2n ∼= H0,0,1,n. The structure
and the construction of Hp,q,m,n are illustrated in Fig. 2.

To complete the description of the irregular convex triangular networks, we introduce the coor-
dinates of its vertices in a natural way That is, based on the horizontal, acute, and obtuse lines, a
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Figure 2: Construction of irregular convex triangular networks

vertex of Hp,q,m,n is assigned the natural coordinates (h, a, o), see Fig. 3.
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Figure 3: (a) Addressing scheme; (b) Coordinates of corner vertices of Hp,q,m,n

4 The metric dimension of irregular convex hexagonal networks

The main result of this paper reads as follows.
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Theorem 4.1. If Hp,q,m,n is an irregular convex hexagonal net, then

dim(Hp,q,m,n) =

{

2; m ≥ p,
3; m < p.

In the rest of the section we prove Theorem 4.1. We first show:

Lemma 4.2. If m < p, then dim(Hp,q,m,n) > 2.

Proof. Suppose on the contrary that dim(Hp,q,m,n) = 2 and let {u, v} be a resolving set of Hp,q,m,n.
By Theorem 2.1, degG(u) ≤ 3, degG(v) ≤ 3, and there is a unique shortest u, v-path. Therefore, we
need to consider the following six cases.

Case 1: u = (0, n − p, n+m) and v = (0, n,m+ n− p).
We have d(u, (p + 1, n − p− 1,m+ n− p)) = d(v, (p + 1, n − p,m+ n− p− 1)), a contradiction.

Case 2: u = (0, n,m + n− p) and v = (n+m− p, n, 0).
We have d(u, (n− p+m, p−m− 1, n− p+m+1)) = d(v, (n− p+m+1, p−m− 1, n− p+m)), a
contradiction.

Case 3: u = (n+m− p, n, 0) and v = (2n+m− p− q, q, 0).
We have d(u, (n − p+m, q − 1, n− q + 1)) = d(v, (n − p+m− 1, q, n − q + 1)), a contradiction.

Case 4: u = (2n +m− p− q, q, 0) and v = (2n +m− p− q, 0, q).
We have d(u, (2n+m− p− 2q − 1, q, q +1)) = d(v, (2n+m− p− 2q− 1, q +1, q)), a contradiction.

Case 5: u = (2n +m− p− q, 0, q) and v = (n− p, 0,m+ n).
Then we have d(u, (n− p,m+n− q+1, q− 1)) = d(v, (n− p− 1,m+n− q+1, q)) a contradiction.

Case 6: Let u = (n− p, 0,m+ n) and v = (0, n − p, n+m).
We have, d(u, (n − p, n− p+ 1,m+ p− 1)) = d(v, (n − p+ 1, n− p,m+ p− 1)) a contradiction.

We conclude that dim(Hp,q,m,n) > 2.

If u is a vertex of a Hp,q,m,n and r is a positive integer, then let Nr(u) denote the set of vertices of
Hp,q,m,n which are at distance r from u. In addition, we will use the following convention. If Nr(u)
consists of consecutive vertices from a horizontal line, then this will be denoted by Nr(u) = PH . If
needed, we will also identify PH with the set of vertices in the horizontal line that are at distance r
from u. We will use analogues conventions PA and PO when Nr(u) consists of consecutive vertices
from an acute or an obtuse line, respectively. Moreover, if Nr(u) consists of, say, some consecutive
vertices from a horizontal line followed by some consecutive vertices from an obtuse line, this will
be briefly denoted by Nr(u) = PH ∪ PO.

Lemma 4.3. In any Hp,q,m,n we have

1. Nr((0, n − p, n+m)) ∈ {PH ∪ PO, PH , PO}.

2. Nr((0, n,m+ n− p)) ∈ {PH ∪ PA, PH}.

3. Nr((m+ n− p, n, 0)) ∈ {PA ∪ PO, PO}.

Proof. Suppose first that n− p− q ≥ 0. Then

Nr((0, n − p, n+m)) =

{

PH ◦ PO; r ∈ [[1,m+ n]],
PH ; r ∈ [[1 +m+ n,m+ 2n− q − p]],
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where

PH =







{(r, n − p− r + i,m+ n− i) : i ∈ [[0, r]]}; r ∈ [[1, n − p]],
{(r, i,m + 2n− i− p− r) : i ∈ [[0, n − p]]}; r ∈ [[1 + n− p,m+ n]],
{(r, i,m + 2n− i− p− r) : i ∈ [[0,m+ 2n− r − p]]}; r ∈ [[1 + n+m,m+ 2n− q − p]],

and

PO =

{

{(r − i, n + i− p,m+ n− r) : i ∈ [[1, r]]}; r ∈ [[1, p]],
{(r − i, n + i− p,m+ n− r) : i ∈ [[1, p]]}; r ∈ [[1 + p,m+ n].

If n− p− q < 0, then

Nr((0, n − p, n+m)) =

{

PH ◦ PO; r ∈ [[1,m+ 2n− p− q]],
PO; r ∈ [[1 +m+ 2n− p− q,m+ n]],

where

PH =

{

{(r, n + i− p− r,m+ n− i) : i ∈ [[0, r]]}; r ∈ [[1, n − p]],
{(r, i,m + 2n− i− p− r) : i ∈ [[0, n − p]]}; r ∈ [[1 + n− p,m+ 2n− p− q]],

and

PO =







{(r − i, n+ i− p,m+ n− r) : i ∈ [[1, r]]}; r ∈ [[1, p]],
{(r − i, n+ i− p,m+ n− r) : i ∈ [[1, p]]}; r ∈ [[1 + p,m+ 2n− p− q]],
{(r − i, n+ i− p,m+ n− r) : i ∈ [[r −m− 2n + p+ q, p]]}; r ∈ [[1 +m+ 2n− p− q,m+ n].

For m− p ≥ 0 we have

Nr((0, n,m + n− p)) =

{

PH ◦ PA; r ∈ [[1, n]],
PH ; r ∈ [[1 + n,m+ 2n− p− q]],

where

PH =







{(r, n − i,m+ n+ i− p− r) : i ∈ [[0, r]]}; r ∈ [[1, n]],
{(r, n − i,m+ n+ i− p− r) : i ∈ [[0, n]]}; r ∈ [[1 + n,m+ n− p],
{(r,m+ 2n − i− p− r, i) : i ∈ [[0,m+ 2n− p− r]]}; r ∈ [[1 +m+ n− p,m+ 2n− p− q]],

and

PA =

{

{(r − i, n− r,m+ n+ i− p) : i ∈ [[1, r]]}; r ∈ [[1, p]],
{(r − i, n− r,m+ n+ i− p) : i ∈ [[1, p]]}; r ∈ [[1 + p, n]].

If m− p < 0, then

Nr((0, n,m + n− p)) =

{

PH ◦ PA; r ∈ [[1, n]],
PH ; r ∈ [[1 + n,m+ 2n− p− q]],

where

PH =

{

{(r, n − i,m+ n+ i− p− r) : i ∈ [[0, r]]}; r ∈ [[1,m + n− p]],
{(r,m + 2n− i− p− r, i) : i ∈ [[0,m+ 2n− p− r]]}; r ∈ [[1 +m+ n− p,m+ 2n− p− q]],

and

PA =

{

{(r − i, n− r,m+ n+ i− p) : i ∈ [[1, r]]}; r ∈ [[1, p]],
{(r − i, n− r,m+ n+ i− p) : i ∈ [[1, p]]}; r ∈ [[1 + p, n]].
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If m− p ≥ 0, then we have

Nr((m+ n− p, n, 0)) =

{

PA ◦ PO; r ∈ [[1, n]],
PO; r ∈ [[1 + n,m+ n]],

where

PA =

{

{(m+ n− i− p+ r, n− r, i) : i ∈ [[0, r]]}; r ∈ [[1, n − p]],
{(m+ 2n− i− p− q, n− r, r − n+ i+ q) : i ∈ [[0, n − q]]}; r ∈ [[1 + n− q, n]],

and

PO =







{(m+ n− p− i, n + i− r, r) : i ∈ [[1, r]]}; r ∈ [[1, n]],
{(1 +m+ 2n − i− p− r, i− 1, r) : i ∈ [[1, 1 + n]]}; r ∈ [[1 + n,m+ n− p]],
{(1 +m+ 2n − i− p− r, i− 1, r) : i ∈ [[1, 1 +m+ 2n− p− r]]}; r ∈ [[1 +m+ n− p,m+ n]].

Finally, if m− p < 0, then

Nr((m+ n− p, n, 0)) =

{

PA ◦ PO; r ∈ [[1, n]],
PO; r ∈ [[1 + n,m+ n]],

where

PA =

{

{(m+ n− i− p+ r, n− r, i) : i ∈ [[0, r]]}; r ∈ [[1, n − q]],
{(m+ 2n− i− p− q, n− r, r − n+ i+ q) : i ∈ [[0, n − q]]}; r ∈ [[1 + n− q, n]],

and

PO =







{(m+ n− i− p, n+ i− r, r) : i ∈ [[1, r]]}; r ∈ [[1,m+ n− p]],
{(m+ n− p− i, n + i− r, r) : i ∈ [[1,m + n− q]]}; r ∈ [[1 +m+ n− q, n]],
{(1 +m+ 2n − i− p− r, i− 1, r) : i ∈ [[1, 1 +m+ 2n− p− r]]}; r ∈ [[1 + n,m+ n]].

Lemma 4.4. In any Hp,q,m,n, if r1, r2 ∈ [[1,m+2n−p−q]], then Nr1((0, n−p, n+m))∩Nr2((0, n,m+
n− p)) is either empty, or a vertex, or a line segment of a horizontal line.

Proof. From the proof of Lemma 4.3 we recall that if n− q − p ≥ 0, then

Nr((0, n − p, n+m)) =

{

PH ◦ PO; r ∈ [[1,m+ n]],
PH ; r ∈ [[1 +m+ n,m+ 2n− p− q]],

and

Nr((0, n,m + n− p)) =

{

PH ◦ PA; r ∈ [[1, n]],
PH ; r ∈ [[1 + n,m+ 2n− p− q]].

Moreover, if n− q − p < 0, then

Nr((0, n − p, n+m)) =

{

PH ◦ PO; r ∈ [[1,m+ 2n− p− q]],
PO; r ∈ [[1 +m+ 2n− p− q,m+ n]],

and

Nr((0, n,m + n− p)) =

{

PH ◦ PA; r ∈ [[1, n]],
PH ; r ∈ [[1 + n,m+ 2n− p− q]].

The conclusion then follows from these facts.
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Lemma 4.5. In any Hp,q,m,n, if r1 ∈ [[1, 2n + m − p − q]], r2 ∈ [[1, n + m]], and m − p ≥ 0, then

|Nr1((0, n,m + n− p)) ∩Nr2((m+ n− p, n, 0))| ∈ {0, 1}.

Proof. From the proof of Lemma 4.3 we recall that if m− p ≥ 0, then

Nr((0, n,m + n− p)) =

{

PH ◦ PA; r ∈ [[1, n]],
PH ; r ∈ [[1 + n,m+ 2n− p− q]],

and

Nr((m+ n− p, n, 0)) =

{

PA ◦ PO; r ∈ [[1, n]],
PO; r ∈ [[1 + n,m+ n]].

Case 1: n− p− q > 0.
Assume first that r1, r2 ∈ [[1,m+n−p]]. If r1+r2 < m+n−p, then Nr1((0, n,m+n−p))∩Nr2 ((m+
n− p, n, 0)) = ∅, and if r1 + r2 ≥ m+ n− p, then Nr1((0, n,m+ n− p)) ∩Nr2((m+ n− p, n, 0)) is
a singleton.

Assume second that r1 ∈ [[1+m+n−p,m+2n−p−q]] and r2 ∈ [[1, n]]. If r1−m−n+p−r2 > 0,
then Nr1((0, n,m + n − p)) ∩ Nr2((m + n − p, n, 0)) = ∅, and if r1 − m − n + p − r2 ≤ 0, then
Nr1((0, n,m + n− p)) ∩Nr2((m+ n− p, n, 0)) is a singleton.

Assume finally that r1 ∈ [[1, n]] and r2 ∈ [[1+m+n− p,m+n]]. Now, if r2−m−n+ p− r1 > 0,
then Nr1((0, n,m + n − p)) ∩ Nr2((m + n − p, n, 0)) = ∅, and if r2 − m − n + p − r1 ≤ 0, then
Nr1((0, n,m + n− p)) ∩Nr2((m+ n− p, n, 0)) is a singleton.

Case 2: n− p− q ≤ 0.
Assume first that r1, r2 ∈ [[1, n]]. If r1 + r2 < m+ n− p, then Nr1((0, n,m+ n− p))∩Nr2((m+ n−
p, n, 0)) = ∅, and if r1 + r2 ≥ m + n − p, then Nr1((0, n,m + n − p)) ∩ Nr2((m + n − p, n, 0)) is a
singleton.

Assume second that r1 ∈ [[1 + n,m + 2n − p − q]] and r2 ∈ [[1, n]]. If r1 −m − n + p − r2 > 0,
then Nr1((0, n,m + n − p)) ∩ Nr2((m + n − p, n, 0)) = ∅, and if r1 − m − n + p − r2 ≤ 0, then
Nr1((0, n,m + n− p)) ∩Nr2((m+ n− p, n, 0)) is singleton.

Assume finally that r1 ∈ [[1, n]] and r2 ∈ [[1+n,m+n]]. If r2−n−r1 > 0, then Nr1((0, n,m+n−
p))∩Nr2((m+n−p, n, 0)) = ∅, and if r2−n−r1 ≤ 0, then Nr1((0, n,m+n−p))∩Nr2 ((m+n−p, n, 0))
is a singleton.

Corollary 4.6. If u = (h1, a1, o1), v = (h2, a2, o2) are vertices of Hp,q,m,n with h1 6= h2, a1 6= a2,
and o1 6= o2, then |Nr1((0, n − p, n+m)) ∩Nr2((0, n,m+ n− p)) ∩ {u, v}| ≤ 1.

Proof. Suppose on the contrary that u and v are both in Nr1((0, n−p, n+m))∩Nr2((0, n,m+n−p)).
Then Lemma 4.4 implies that Nr1((0, n − p, n+m)) ∩Nr2((0, n,m + n − p)) is a line segment of a
horizontal line. But then h1 = h2, a contradiction.

To complete the proof of Theorem 4.1 it remains to demonstrate (having Lemma 4.2 in mind)
that if m < p, then there exists a metric basis of cardinality 3, and if m ≥ p, then there exists a
metric basis of cardinality 2. We establish these facts in the concluding couple of lemmas.

Lemma 4.7. If m < p, then {(0, n − p, n+m), (0, n,m+ n− p), (m+ n− p, n, 0)} forms a metric

basis of Hp,q,m,n.

Proof. Let u = (h1, a1, o1) and v = (h2, a2, o2) be two arbitrary vertices of Hp,q,m,n.

Case 1: h1 = h2.
Since in this case u and v lie in a segment of a horizontal line we infer that d(u, (m+n− p, n, 0)) 6=
d(v, (m+ n− p, n, 0)).
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Case 2: a1 = a2.
Now we have d(u, (0, n − p, n+m)) 6= d(v, (0, n − p, n+m)).

Case 3: o1 = o2.
As u and v are in a segment of an obtuse line, d(u, (0, n,m + n− p)) 6= d(v, (0, n,m + n− p)).

Case 4: h1 6= h2, a1 6= a2, and o1 6= o2.
Suppose that d(u, (0, n−p, n+m)) = d(v, (0, n−p, n+m)) = r1. Then u, v ∈ Nr1((0, n−p, n+m))
and we claim that d(u, (0, n,m + n − p)) 6= d(v, (0, n,m + n − p)). Suppose that d(u, (0, n,m +
n − p)) = d(v, (0, n,m + n − p)) = r2. Then u, v ∈ Nr2((0, n,m + n − p)) which implies that
{u, v} ⊆ Nr1((0, n − p, n +m)) ∩Nr2((0, n,m + n− p)). This contradiction to Corollary 4.6 yields
d(u, (0, n,m + n− p)) 6= d(v, (0, n,m + n− p)).

Lemma 4.8. If m ≥ p, then {(0, n,m + n− p), (m+ n− p, n, 0)} forms a metric basis of Hp,q,m,n.

Proof. Apply Lemma 4.5.
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